Prof. Dr. Alfred Toth

Wertebalanciertheit bei polykontexturalen Logiken

1. Wie in Toth (2019) gezeigt wurde, kann man die Günther-Logik (in der nur die logische Subjektposition iterierbar ist) wie folgt definieren

$$L^* = (0, (S_1, ..., S_n)).$$

Eine Logik, in der nur die Objekt-Position iterierbar ist, wäre eine Logik der Form

$$L^{**} = ((0_1, ... 0_n), S),$$

und eine vollständige polykontexturale Logik, in der Kontexturen K sowohl durch

$$K = f(S)$$

als auch durch

$$K = f(0)$$

definiert werden können, läßt sich dann wie folgt definieren

$$L^{***} = ((0_1, ... 0_n), (S_1, ..., S_n)).$$

Erst auf der Basis von L*** ist also eine Zahlentheorie nicht nur quantitativ, sondern auch qualitativ vollständig.

2. Balanciertheit von Logiken

$$2.1. L = (0, 1)$$

Triviale Balanciertheit liegt vor bei der monokontexturalen, zweiwertigen aristotelischen Logik.

2.2.
$$L^* = (0, (S_1, ..., S_n))$$

Hier muß also gelten

$$|S_i| > |O_i|,$$

wobei per definitionem $|0_i| = 1$ gilt.

Sei

$$0 = X, S = (1, 2)$$

dann haben wir eine minimale L*-Logik mit den 3! = 6 Wertfunktionen

- (X, 1, 2)
- (X, 2, 1)
- (1, X, 2)
- (1, 2, X)
- (2, X, 1)
- (2, 1, X).

2.3.
$$L^{**} = ((0_1, ... 0_n), S)$$

Hier muß also gelten

$$|0_{i}| > |S_{i}|$$

wobei per definitionem $|S_i| = 1$ gilt.

Sei

$$0 = (X, Y), S = 1,$$

dann haben wir eine minimale L^{**} -Logik mit den 3! = 6 Wertfunktionen

- (X, Y, 1)
- (X, 1, Y)
- (Y, X, 1)
- (Y, 1, X)
- (1, X, Y)
- (1, Y, X).

2.4.
$$L^{***} = ((0_1, ... 0_n), (S_1, ..., S_n))$$

Sei $|S_i| > 1$ und $|O_i| = 1$, dann können wir hier drei Fälle unterscheiden

- $|0_i| < |S_i| \hspace{0.5cm} L^*\text{-}\ddot{U} berbalancier the it/L^{**}\text{-}Unterbalancier the it}$
- $|0_i| > |S_i|$ L**-Überbalanciertheit/L*-Unterbalanciertheit
- $|0_i| = |S_i|$ L***-Balanciertheit

Sei

0 = (X, Y) und S = (1, 2)

dann haben wir eine minimale L***-Logik mit den 4! = 24 Wertfunktionen

- (XY12)
- (XY21)
- (X1Y2)
- (X12Y)
- (X2Y1)
- (X21Y)
- (YX12)
- (YX21)
- (Y1X2)
- (Y12X)
- (Y2X1)
- (Y21X)
- (1XY2)
- (1X2Y)
- (1YX2)
- (1Y2X)
- (12XY)
- (12YX)
- (2XY1)
- (2X1Y)
- (2YX1)
- (2Y1X)
- (21XY)

(21YX).

Eine auf L* basierende qualitative Mathematik könnte natürlich die von Günther (1976-80) eingeführten Zahlensysteme der Proto-, Deutero- und Tritozahlen benutzen, da die Abbildungen von Peanozahen, die ihnen zugrunde liegen, ja keinen Unterschied zwischen Subjekt- und Objektwerten machen. Da die Wertfunktionen von L*** die Länge 4 haben, gelten hier also die Morphogramme für die Kontextur K=4.

XXXX	XXXX	XXXX
XXXY	XXXY	XXXY
_	_	XXYX
_	XXYY	XXYY
XXY1	XXY1	XXY1
_	_	XYXX
_	_	XYXY
_	_	XYX1
_	_	XYYX
_	_	XYYY
_	_	XYY1
_	_	XY1X
_	_	XY1Y
_	_	XY11
XY12	XY12	XY12

Literatur

Günther, Gotthard, Beiträge zur Grundlegung einer operationsfähigen Dialektik. 3 Bde. Hamburg 1976-1980

Toth, Alfred, Wie müßte eine vollständige Zahlentheorie aussehen? In: Electronic Journal for Mathematical Semiotics, 2019

26.7.2019